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Note 

Fast and Accurate Spectral Treatment 
of Coordinate Singularities 

1. INTRODUCTION 

In spherical and cylindrical geometries the coordinate singularities along the 
polar axis can decrease the accuracy or computational efficiency of classical spectral 
methods. This is due to the fact that analytic functions have special behavior near 
the singularities. Standard spectral representations either do not fully capture that 
behavior, or they are ill-suited for fast transforms and are therefore inefficient for 
computing products Cl]. In this note we present algorithms that use modified 
spectral representations which explicitly enforce analyticity on the axis and use 
fast Fourier transforms to compute products. 

2. BEHAVIOR NEAR THE SINGULARITY 

Cylindrical and spherical coordinates both have singularities along their polar 
axes; however, a good numerical method should preserve the smoothness of a VYm 
physical solution despite the singularities. Consider the Fourier expansion of a 
scalar function in spherical coordinates 

F(r, O,q5) = +f +f F,,(r) cos(n0) eimd 
m=-m n=O 

(1) 

and in cylindrical coordinates 

+‘X 
m z, 4) = c +f F,,(s) ei”‘eimo, (2) 

In=--00 n=-m 

where we limit this discussion to a bounded domain in r and s and choose units 
such that O<r<l, 0<8<x, 0<4<271, O<s< 1, and -cc Gz< +co. It can be 
shown [ 1 ] that for F to be infinitely differentiable the spectral coefficients must 
satisfy 

y F,,,,,(r) cos(n8) = O(sinl”’ 0) 
n=O 

(0 + 0, rr) (3) 

F nm (r) = O(rl’l) 

217 
t-0) (4) 
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and 

FHrn(S) = O(F) (s + 0). (5) 

Equations (3), (4), and (5) are the pole conditions and express the necessary and 
sufficient conditions for a solution to be Wm. If these constraints are not satisfied, 
then the numerical method can create non-smooth solutions. All of the pole condi- 
tions are similar, and the treatment of one can easily be generalized to the others. 
(See Appendix.) Therefore, we shall treat only the m =0 pole condition in 
Eq. (4)-the singularity in axisymmetric spherical coordinates. An expansion that 
automatically enforces this pole condition is 

F(r, e) = +f F,(r) rn cos(ne), 
FZ=O 

(6) 

where F,(r) remains bounded at r + 0. The basis functions used in this expansion 
are referred to as the modified Robert functions [2, 33, and we will refer to F,Jr) 

as the nth Robert coefficient. Unfortunately, solving for F,(r) from F(r, 0) by 
dividing the inverse Fourier transform of F(r, 0) by rfl is ill-conditioned at r + 0 
[2]. Orszag, in an initial-value study, used an expansion that satisfies Eq. (4) for 
the first few n modes, and although the method allows the use of fast transforms, 
the maximum time-step is restricted [ 11. Another approach to the pole problem, 
frequently used for (but not limited to) non-axisymmetric functions defined on 
spherical shells is to expand the &#-dependence in spherical harmonics. Then pole 
condition (3) is automatically satisfied. This technique however, is not amenable to 
fast transforms and is consequently slower than the double Fourier series expansion 
[ 11. Here, we present an algorithm that allows fast transforms with modified 
Robert functions. 

3. ALGORITHM 

Consider two axisymmetric functions U(r, 0) and V(r, 6). Our goal is to compute 
We UV in a well-conditioned manner that exploits fast transforms in the 0 
direction. All three quantities can be written in the Robert form: 

U(r, 6) = y U,(r) rm cos(mO) 
m=O 

(7) 

V(r, e) = y V,(r) rm cos(mO) 
??I=0 

(8) 

W(r, e) = +f W,(r) rm cos(me). 
m=O 
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In what follows, it is aArmed that we know how to compute products of U,,(r) 
and V,,,*(r) in a well-conditioned, fast manner due to the fact that U,, and Vmz are 
regular, smooth functions of r that need not satisfy any pole conditions (i.e., for the 
purposes of this paper, we can assume that Urn,(r) and V,,Jr) are known at grid 
or collocation points and their products are computed by direct multiplication). 
When computing such products, we ignore the effects of truncation errors. 

We define the auxiliary functions: 

+‘X 

Ul(C)(r, e) = c U,(r) cos(r&) (10) 
m=O 

Vl”“(r, 0) = y V,(r) cos(m0) (11) 

ul(“)(t-, e) = C U,(r) sin(&) (l-2) 
m=O 

Vl(S)(r, e) = +f V,(r) sin(m0) 
m=O 

(13) 

U2(‘)(r, e) = +f U,(r) rZm cOqme) 
m=O 

(14) 

V2(‘)(r, 0) = y V,(r) r2m costme) 
m=O 

(15) 

U2’“‘(r, e) = +f U,(r) rZm sin(&) 
tW=O 
+CC 

(16) 

V2(‘)(r, e) E C V,(r) r2m sin(m0). (17) 
IT?=0 

Now write W as the double sum: 

w= +xm y u,, v,, rm’+m2 COS(W, e) cos(m,e) (18) 
m,=o m2=0 

or 
w=wl+w2 

2 ’ 

where 

Wl = +f +f U,, Vm2rm1+m2 cos(m, +m,)O 
m,=o m2=0 
+oc f’x 

W2 = 1 1 U,, Vm2rm1+m2 cos(m, -m,)B. 

(19) 

(20) 

(21) 
m,=o nq=o 
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We now show that the Robert coefficients of Wl and W2 can be derived from the 
Fourier coefficients of suitably chosen products of our auxiliary functions, which 
can themselves be computed by fast Fourier transforms (FFTs). We start with Wl: 

Wl(r, l9)= +f 
( 

t u,, v+,, 
> 

r* cos(m0) = +f Wl,(r) rm cos(m0) (22) 
*=O *,=O *=O 

However, 

ul”‘vl”‘- Ul’“‘Vl’“‘= y U,, V,,cos(mI +m,)8 (23) 
*,,*z=O 

so that 

Ul”‘Vl”“-- Ul’“‘Vl’“‘= +f Wl, cos(me). (24) 
*=O 

Therefore the Robert coefficient Wl m is the inverse Fourier transform of 
~l’C’Vl’C’- Ul’“‘Vl’“‘. 

To obtain W2,, the procedure is a bit more complicated but is based on the 
same principle. We write 

W2 = +xm W2,r” cos(m0). 
*=O 

(25) 

Equations (21) and (25) show that 

WL =c, +f (Urn+*, V,, + V,,,, urn,) r2m’ 
*,=O 

(26) 

and 

1 1 if m>O 
cm= l/2 if m = 0. 

But again, we can make use of our auxiliary functions, 

,yl’“‘f,q” + (yl’“‘fq’“‘+ Vl’“‘j-J2” + Vl’“‘U2’“’ 

= y W2,(r)( 1 + rzm) cos(me). 

*=O 

(27) 

(28) 

To obtain W2,, we then divide the inverse Fourier transform of the left-hand side 
of Eq. (28) by (1 +r*“) w ic h’ h is well-conditioned because 1 d (1 + r2m) < 2. In this 
algorithm, eight FFTs are needed to obtain the values of the auxiliary functions at 
the collocation points, and two inverse transforms are needed to retrieve Wl, and 
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W2,. A modification of our method requires only one inverse transform if we note 
that j-Jl(‘)Vl(‘)- ul’“‘~l’“‘+ up”‘v2w- &+‘Jq’“’ 

=go Wl,(r)(l + P) cos(m8). (29) 

Then Eqs. (28) and (29) imply 

Ul”‘V2”” + U1’“‘yp + f,q”“u2”” + yl’“‘u2’“‘+ Ul”‘~l”” 

- Ul’“‘j/l (s) + U2”“T/2”‘_ U2’“‘V2’“’ 

= 2 +f W,(r)( 1 + rzm) cos(m0). 
PI=0 

(30) 

Here, the Robert coefficients W,(r) are obtained directly by dividing the inverse 
transform of Eq. (30) by (1 + rZm). 

4. CONCLUSION 

Our fast convolution algorithm uses modified Robert functions is well-condi- 
tioned and requires nine FFTs in the 8 direction. In contrast, spherical harmonics 
do not have efficient fast transforms. Orszag’s double Fourier series method 
requires only three FFTs but does not satisfy all of the pole conditions. We have 
implemented our algorithm in an axisymmetric spherical geometry for a set of 
hydrodynamic equations with fourth-order spatial derivatives (which causes stiff- 
ness at the origin). Our fast convolution method is stable and gives accurate solu- 
tions, whereas we found that the Fourier series method failed. This application of 
our method will be reported elsewhere. 

Our derivation is easily extentable to other geomtries, and in the Appendix we 
present it for pole conditions (3) and (4). In three-dimensional non-axisymmetric 
spherical geometries, there is a double coordinate singularity at r = 0 and 8 = 0, rc. 
Treating it requires 16 auxiliary functions and 17 FFTs, hence the method is six 
times slower than the Fourier series method (and might be as slow as the spherical 
harmonics expansion when only a small number of 8 modes are used). Another 
limitation of our method is that nonlinear terms other than products cannot be 
computed. Higher-order products can be calculated by repeated application of the 
algorithm, but the method is costly. 

This work was supported by NSF Grant CTS-89-06343, LLNL Grant ISCR 
89-06 and one of us (S.B.) acknowledges an IBM Graduate Fellowship. 
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APPENDIX A 

Here, we give the derivation of the convolution algorithm in the case where the 
representation is of the form 

F(0, 4) = ?f F,(B) sin’*’ 8eim” 
m=-‘x 

(31) 

which is the expansion that automatically satisfies the pole condition (3) on a 
spherical shell. It is also the appropriate expansion in cylindrical geometry by 
substituting s for sin 0. Again, our goal is to compute the Robert coefficients of 
Wr UV. We write 

(32) 

+CC 

v(e, 4) = C v,(e) sirrIm’ t&P@ (33) 

w(e, 4) = y w,(e) sit? 8P4 (34) 

and define the functions 

ui(e, 4) = +f c, u,(e) ermb 
PI=0 

(35) 

Eye, fj) = C C, u,(e) sin12ml e&m++ 
I??=0 

0 
u^l(e, 4) = 1 c, U,(e) P” 

m-cc 

&(e,+ 5 c, u,(e) sin12ml f3P+ 
nl= -cc 

(36) 

(37) 

(38) 

Ti(e, 4) = C C, v,(e) eimm 
m=O 

+m 
v2(e, 4) - C C, v,(e) sinlZml OP+ 

m=O 

v’i(e,+ i C, v,(e) eim9 
m-m 

Fqe,+ i C, v,(e) sin12ml fIP4. 
m= -cc 

(39) 

(40) 

(41) 

(42) 

The product UV can be decomposed into four terms: 

w=Wl+W2+W3+W4, (43) 
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where 
+m +a0 

Wl E C 1 cm, Um,cml Vm, sin’“” + Jm21 &+ml+mz)b (44) 
m,=o m*=o 

(46) 

w4 - +f ; m, m, m2 
c U c V,, sinI” + ImZl &‘(ml +m2)4. (47) 

m,=o m*= -m 

Let Wl,, W2,, W3,, W4, be the Robert coefficients of WI, W2, W3, W4, 
respectively. We can easily obtain Wl, + W2, from the identity 

-- 
Ul Vl+@lv?= +f (Wl,+ W2,)eimd. 

*=-cc 
(48) 

Similar to the derivation in Section 3, we do not compute (W3, + W4,) directly 
but rather (W3, + W4,)( 1 + siniZml f?): 

ulv^2+u^1v2+v1url+fiu2= +f (W3,+ W4,)(1+sin~2m1Q)eim~. (49) 
m=--53 

Again, we can reduce the number of inverse transforms from 2 to 1 by computing 
(1 + sinlZml 0) W,,, instead of ( Wl, + W2,) and (1 + sin12ml O)( W3, + W4,). This 
is achieved by noticing that 

-- -- 
Ul Vl+LQv^l+U2 V2+&!v^2= +f (Wl,+ W2,)(1+sin12m10)e”“. (50) 

*=-cc 

This method now requires eight direct FFTs and one inverse FFT. 
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